
On Shaky Ground - A Study of Security Vulnerabilities in Control Protocols

Eric J. Byres, Dan Hoffman & Nate Kube

Byres Security Inc.: 7178 Lancrest Tr., PO Box 178, Lantzville, BC, Canada, V0R 2H0, eric@ByresSecurity.com
Wurldtech Analytics Inc.: 208-1040 Hamilton St., Vancouver, BC, Canada, V6B 2R9, nkube@wurldtech.com

University of Victoria: Department of Computer Science, PO Box 3055 STN CSC, Victoria, BC, Canada, V8W 3P6,
dhoffman@cs.uvic.ca

Abstract – The recent introduction of information technologies such as Ethernet® into nuclear industry control devices
has resulted in significantly less isolation from the outside world. This raises the question of whether these systems could be
attacked by malware, network hackers or professional criminals to cause disruption to critical operations in a manner
similar to the impacts now felt in the business world.

To help answer this question, a study was undertaken to test a representative control protocol to determine if it had
vulnerabilities that could be exploited. A framework was created in which a test could express a large number of test cases in
very compact formal language. This in turn, allowed for the economical automation of both the generation of selectively
malformed protocol traffic and the measurement of device under test’s (DUT) behavior in response to this traffic.

Approximately 5000 protocol conformance tests were run against two major brands of industrial controller. More than
60 categories of errors were discovered, the majority of which were in the form of incorrect error responses to malformed
traffic. Several malformed packets however, caused the device to respond or communicate in inappropriate ways. These
would be relatively simple for an attacker to inject into a system and could result in the plant operator losing complete view
or control of the control device. Based on this relatively small set of devices, we believe that the nuclear industry urgently
needs to adopt better security robustness testing of control devices as standard practice.

I. INTRODUCTION

The recent introduction of information technologies

such as Windows®, Ethernet® and TCP/IP in nuclear
industry control devices has resulted in significantly less
isolation from the outside world. Both anecdotal evidence
[1] [2] and research [3] indicates that SCADA protocols,
particularly those running over top of transport protocols
such as TCP/IP, have vulnerabilities that could be
exploited by network hackers or terrorists to cause
considerable disruption to our critical infrastructures.
Little is known about these vulnerabilities and there are
limited security tools or methodologies available for
vendors or users to detect these flaws prior to equipment
deployment.

As highly integrated control systems are relatively
new, there is shockingly little data, good or bad, on
network security for these industrial devices. The current
methodologies for security testing focus on business
systems and their dependence on common operating
system such as Windows and UNIX. Similarly,
vulnerability reporting such as CERT or BugTraq
primarily addresses IT products and rarely includes issues
with industrial control products. In order to determine the
security robustness of integrated control systems new
testing methodologies are required.

This paper describes a new test framework which
enables the economical creation of security suites targeted
at testing the dominant SCADA application layer
protocols.

To demonstrate the effectiveness of the framework
we employed it to generate a test suite for the
MODBUS/TCP protocol. We then exercised the resulting
test suite against the MODBUS/TCP implementations on
two representative SCADA devices. The results were
unsettling.

II. ORGANIZATION OF THIS PAPER

This paper is designed to introduce and support the
need for new and efficient tools to test the network
security robustness of industrial control devices. We
begin by briefly presenting some background information
on protocol testing and the tools which are available. We
then introduce blackPeer, an innovative testing
framework for communication protocols. We then discuss
the employment of blackPeer in conformance testing
MODBUS/TCP implementations. We conclude with a
summary of the MODBUS/TCP implementation errors
found by blackPeer in two representative SCADA devices
and some observations on how the SCADA community
can better ensure the security of its control systems.

III. BACKGROUND AND RELATED WORK

Many communication protocols are highly complex

and their implementations may be written to a
specification that contains areas of ambiguity. Experience
tells us that incorrect assumptions or carelessness of the
implementer are common sources of protocol
vulnerabilities. Protocol vulnerabilities can reveal
themselves as segmentation faults, stack, heap or buffer
overflows, etc., all of which can cause the protocol
implementation to fail resulting in a potential exploit.

Tools to scan for known vulnerabilities in traditional
IT systems have been available for at least a decade. The
market for these vulnerability scanners has been
significant and products such as Nessus, FoundScan and
Internet Security Scanner (ISS) have been popular with IT
administrators trying to locate unpatched computers on
their networks. Unfortunately these tools offer little in the
way of security testing for new products with new
vulnerabilities - they only check for known vulnerabilities
available in vulnerability lists such as CERT or BugTraq.
As a result, most vendors have little knowledge of
possible vulnerabilities in new systems until after the
product is released to the public.

This is particularly true for the SCADA systems used
in critical infrastructures such as the nuclear, oil and gas,
water and electrical generation/distribution industries. The
embedded devices used in these systems are not the usual
Windows or UNIX-based platforms and the
vulnerabilities are not available in the IT-focused CERT
or BugTraq vulnerability lists. As a result, SCADA
operators have little knowledge of possible vulnerabilities
in their critical systems until a disaster (such as the
August 2003 blackout in the Eastern U.S.) strikes.

In the academic world there have been several test
tools that have had success in locating new vulnerabilities
in network devices based on grammar and fuzzy
techniques. Considerable work has been done by the
PROTOS project group [4] and by Tal, Knight and Dean
[5]. Each considers the syntax-based generation of
protocol data units (PDU's). A PDU translates into a
single test packet to be sent to the device under test
(DUT). Their methods have proven effective in finding
vulnerabilities [4][5] however, they only allow for the
construction of simple single-packet test cases. Such test
cases are not sufficient for testing protocol functionality
requiring interaction between the test case generator and
the DUT. To perform such testing the test case generator
must be able to generate test cases consisting of
semantically meaningful sequences of PDU's.

A sequence of PDU's in which each PDU is preceded
by its communication direction relative to the test case
generator is termed a protocol test sequence (PTS). PTS’s
can direct test case executors to not only transmit certain
PDU’s but also to compare received packets against

indicated PDU’s. Such ability greatly enhances the
effectiveness of fuzzer-based methods.

Furthermore, as highly integrated control systems
typically consist of many different devices and because
these devices may contain implementations of many
different protocols, a truly valuable protocol vulnerability
testing tool must be easily applicable to a wide variety of
protocols. As well, a valued tool must be employable by
users with varying skill sets. For example, the tool should
be employable by the vendor, by a field engineer or by a
plant floor worker. To the best of our knowledge, no such
tool exists.

IV. THE BLACKPEER TEST FRAMEWORK

The automated generation of test data for the
purposes of software validation and verification has been
a major aim of testing research[6]. Path-oriented methods,
data flow methods, random testing, adaptive testing, and
syntax-based testing are a few of the methods employed
for this task.

Syntax-based testing tools process a description of
the desired test data expressed in notation such as Backus
Naur Form (BNF). Given the test data syntax these tools
generate test sets which satisfy the syntax. A major
problem in syntax-based testing is respecting contextual
dependencies. Solutions include the use of dynamic
syntax, addition of rules to test data syntax during test
data generation, and attributed grammars, grammars
whose definition is overloaded with attributes.

In attribute grammars, the attributes represent
contextual information associated with terminals and non-
terminals. Attribute grammars can solve the test oracle
problem as the contextual information can allow for the
production of test data along with the output expected
from the DUT. Hence, attribute grammars can also solve
the problem of generating semantically meaningful
sequences of PDU's, i.e. PTS’s.

blackPeer is an attribute grammar based PTS
generator and executor. The basic file structure of
blackPeer is similar of that employed by Sirer and
Bershad [7] and is shown in Figure 1. PTS's are described
by an attributed grammar. This grammar is passed as
input to the Code Generator. The Code Generator pareses
the grammar and creates an executable program called the
TestCase Generator. When supplied with an initialization
file called the variable init file, the TestCase Generator
writes out the PTS's encoded by the grammar to a file
called the testCases file. The TestCase Executor then
reads in the testCases file along with basic information
about the DUT and executes the PTS's one by one,
reporting and recording the results.

The modular nature of the blackPeer tool allows
different levels of functionality to be made available to
different categories of users. For example, a plant worker
who knows little of communication protocols but much

Fig. 1. blackPeer PTS generation and execution.

about PLC's may be given a testCases file and an

appropriate testCase Executor. An industrial engineer on
the other hand may be given the testCase Generator thus
allowing him to create a variety of testCases files
depending on the nature of the variable init file he creates.

This modular nature also allows for the easy
transition between different protocols. That is, to test a
different protocol all that is needed is a new grammar file
and an appropriate testCase Executor.

All grammar files are written using an extended

Backus Naur Form (BNF) syntax:
• non-terminals specified as identifiers and

terminals as string constants
• alternatives specified by a vertical bar and

concatenation by one or more spaces
• the required portion of a production is terminated

by a newline character
• the right hand side expression can contain

parenthesis one level deep for grouping logical
expressions, square brackets for denoting
optional expressions, and braces to delimit
expressions that can occur zero or more times

• an optional range after the opening brace allows
repetition a fixed number of times

• comments are started by a // and terminated by
the end of the line

• the start symbol is the non-terminal on the left
hand side of the first production

The syntax for a grammar is as follows:

grammar ::=
 rule {rule} "\n"
rule ::=
 nonterminal "::=" rhs "\n"
rhs ::=
 (nonterms | terms) "\n" [pre] [post] "\n"

nonterms ::=
 "(" nonterms ")" | nonterminal {("|" | "

 ")nonterminal}
terms ::=
 "(" terms ")" | terminal {("|" | " ")terminal}
pre ::=
 "%pre{\n" program_statements "\n}%"
post ::=
 "%post{\n" program_statements "\n}%"
nonterminal ::=
 letters_and_or_digits
terminal ::=
 """ value ":" value """
value ::=
 ["$"] letters_and_or_digits

The syntax for a test case is as follows:

testcase ::=
 tx {tx|rx} "\n"
tx ::=
 "TX:0 " digits ":" digits" " {digits ":" digits " "}
rx ::=
 "RX:0 " ("*"|digits) ":" digits " " {("*"|digits)

 ":" digits " "}

V. CONFORMANCE TESTING MODBUS/TCP

The blackPeer framework is well-suited to

conformance testing. Given a protocol’s specification, one
can easily construct a grammar defining the correct
operation of an implementation to this specification. An
excerpt of the grammar written for the MODBUS/TCP
protocol is shown in Example I. In conjunction with the
creation of a grammar comes the definition of the
variability found across implementations. An example of
one such variability is the number of holding registers
present on the DUT. Such variability’s are defined in a
separate variable initialization file and are passed as input
to the test case generator, see Figure 1. An Excerpt of the
variable file for the MODBUS/TCP grammar is shown in
Example II.

EXAMPLE I. Excerpt from MODBUS grammar file

REQ ::= TX HDR FC DATA
%post{
int i = Utilily.getVariableValue("currLen");
int tot = Utility.sumOfLengths(tokens)-6 ;

if(i==-1)//sub with real length

 Utility.setRuleResolve(tokens[1],2, tot, 2);

else if(tot != i)

 Utility.setVariableValue("exceptCode",4);
}%

EXAMPLE II. Excerpt from variable init file

rQuan = {0,1,$rhmaxconsec-1,$rhmaxconsec,

 $rhmaxconsec+1, $cmaxconsec-1, $cmaxconsec,
 $cmaxconsec+1}

wAddr={0,1,$numIReg-1,$numIReg,$numDisc-

 1,$numDisc,$numCoils-1,$numCoils,
 $numHReg-1,$numHReg,3000}

V.A. Test Environment

The basic test bench consists of (i) the DUT (in this

case the PLC whose MODBUS/TCP implementation we
wish tested), and (ii) the platform computer running
blackPeer.

The network configuration is illustrated in figure 2.

Fig 2. The hardware test bench

We selected two representative SCADA devices for

test. We will refer to them as PLC M and PLC Q.
PLC Q is a modular backplane PLC. At its most basic

level it consists of a variety of input/output (I/O),
processor and communications modules that are installed
in a common backplane. The central processor unit (CPU)
module is separate from the other modules. The Ethernet
Communications module provides an interface between
an Ethernet-based network, the backplane, and the CPU
module. It supports the MODBUS protocol over TCP.

PLC M is a small versatile PLC. It is used for PC-
based control, distributed control, distributed I/O and
traditional, stand-alone PLC Control. It employs Ethernet
as its primary external communications protocol and
supports MODBUS/TCP.

VI. RESULTS

We start with grammars covering read and write

function codes. Then we examine if the device supports
the function codes that are designated for serial only. We
finish off with a grammar that examines miscellaneous
and invalid function codes.

VI.A. MODBUS/TCP Read Grammar Test

The MODBUS/TCP Read grammar examines the

DUT’s behavior in response to valid and invalid read
requests. The function codes tested are:

• 01 Read Coils

• 02 Read Discrete Inputs
• 03 Read Holding Registers
• 04 Read Input Registers

TABLE I. Read Grammar Test Observed Behavior
 PLC M PLC Q
Testcases 352 352
Passed 231 298
Failed 121 54

We now break down the failed tests by function code.

VI.A.I. Function Codes 01 and 02

PLC Q and PLC M returned incorrect error codes
when:

1. the starting address and quantity of outputs was
valid but the starting address + quantity of
outputs was out of range

2. the starting address was invalid but the quantity
of outputs was within range

VI.A.II. Function Code 03

PLC Q conformed to function code 03’s specification

whereas PLC M returned incorrect error codes under the
following circumstances:

1. when the starting address was valid but the
quantity of registers to read was set to zero

2. when the starting address was valid but the
quantity of registers was out of range

3. when the starting address was invalid and
quantity of registers was 0 or out of range

VI.A.III. Function Code 04

PLC Q returned no error while PLC M returned
incorrect error codes under the following erroneous
circumstances:

1. when the starting address and the quantity of
registers was valid but the quantity of registers +
starting address was out of range

2. when the starting address was invalid but the
quantity of registers was within range

VI.B. MODBUS/TCP Write Grammar Test

The MODBUS/TCP Write grammar examines the

DUT’s behavior in response to valid and invalid write
requests. The function codes tested are:

• 05 Write Single Coil
• 06 Write Single Register
• 15 Write Multiple Coils
• 16 Write Multiple Registers

TABLE II. Write Grammar Test Observed Behavior
 PLC M PLC Q
Testcases 1384 1384
Passed 504 1040
Failed 880 344

We now break down the failed tests by function code.

VI.B.I. Function Code 15

Both PLC Q and PLC M returned incorrect error

codes under the following circumstances:
1. when the starting address, the quantity of outputs

and the data was valid but the starting address +
quantity of output was out of range

2. when the starting address and the quantity of
outputs was valid but the starting address +
quantity of outputs was out of range and the data
byte length was not equal to the actual length of
the data

3. when the starting address was invalid and the
quantity of outputs was 0 and data length was
correct or incorrect

4. when the starting address was invalid and the
quantity of outputs was non zero and the data
length was incorrect

VI.B.II. Function Code 16

PLC Q incorrectly reported an error when:
1. the starting address was valid and the starting

address + quantity of registers was within range
and the quantity of registers was 122 or 123
(limit is 123)

PLC Q returned incorrect error codes under the

following circumstances:
1. when the starting address was valid and the

quantity of registers was 122 or 123 and the
starting address + quantity of registers was out of
range and the data was valid

PLC M returned incorrect error codes under the

following circumstances:
1. when the starting address was valid but the

quantity of registers was zero
2. when the starting address and quantity of

registers was valid and the starting address +
quantity was with in range but the actual data
length and specified data length were not in
agreement

3. when the starting address was valid and the
quantity of registers was invalid and the staring
address + quantity of registers was within range

4. when the starting address was valid and the
quantity of registers was invalid and the actual

data length and the specified data length were or
were not in agreement

VI.C. MODBUS/TCP Serial Grammar Test

The MODBUS/TCP Serial grammar examines the

DUT’s behavior in response to valid and invalid serial
requests. The function codes tested are:

• 07 Read Exception Status
• 08 Diagnostics
• 11 Get Comm Event Counter
• 12 Get Event Log
• 17 Report Slave ID

TABLE III. Serial Grammar Test Observed Behavior
 PLC M PLC Q
Testcases 28 28
Passed 0 11
Failed 28 17

We now break down the failed tests by function code.

VI.C.I. Function Codes 07, 11, 12 and 17

Both PLC Q and PLC M responded to function code

07, 11, 12 and 17 requests even though they are serial line
only functions. The correct response would have been to
return an error code of 1 indicating function not
supported.

VI.C.II. Function Code 08

Under all circumstances PLC M responded to

function code 08 requests by returning an error code of 3
(indicating an incorrect data value). The correct response
would have been to return an error code of 1 indicating
function not supported.

PLC Q returned incorrect error codes in response to
function code 08 sub functions 3, 14, 15 and 20. More
disturbing, PLC Q carried out the requests of function
code 08 sub functions 0, 1, 2, 4, 10, 11, 12, 13, 16, 17 and
18.

Function code 08 sub function 4 forces a PLC into
listen mode. It will not leave listen mode until it receives
a “restart communications option” (function code 8 sub
function 1). However, since MODBUS is being executed
over TCP PLC Q must first engage in a TCP three-way
handshake prior to receiving a “restart communications
command”. As PLC Q is in listen mode it will not engage
in the 3-way handshake, hence PLC Q must be power-
cycled before it will come back online.

This brings to light an interesting point. Function 08
sub function 4 was created to allow the engineer to isolate
a network flooding PLC. This is especially useful in the
case of older low speed wireless networks where the

underlying transport medium was easily saturated.
However, when executing MODBUS over TCP such
saturation is easily mitigated by TCP’s back-off and
retransmit strategies.

Furthermore, as demonstrated above, executing
function code 08 sub function 4 over a TCP connection is
dangerous. It was intended to be executed over a stateless
medium, one in which the special “reset communications”
packet could be received at any time and not over a
medium in which a stateful communications startup is
required.

This is indeed a good example of the problems that
one faces when transmitting one protocol inside another.
Investigating each protocol individually does not shed
light on the problems that may arise when the protocols
become coupled in the way that MODBUS and TCP have
been.

VI.D. MODBUS/TCP Miscellaneous Grammar Test

The MODBUS/TCP Miscellaneous grammar

examines the DUT’s behavior in response to valid and
invalid miscellaneous function code requests. It also
examines the DUT’s behavior in response to invalid
function code requests. The valid function codes tested
are:

• 20 Read File Record
• 21 Write File Record
• 22 Mask Write Holding Registers
• 23 Read / Write Multiple Registers
• 24 Read FIFO Queue
• Fuzzed Headers

TABLE IV. Serial Grammar Test Observed Behavior
 PLC M PLC Q
Testcases 3433 3433
Passed 531 2171
Failed 2902 1262

We now break down the failed tests by function code.

VI.D.I. Function Code 20

Both PLC Q and PLC M returned incorrect error

codes under the following circumstances:
1. when the byte count < 7 or greater than 245
2. when the reference type !=6
3. when the record number >10000 or the record

number + register length >10000

VI.D.II. Function Code 21

Both PLC Q and PLC M returned incorrect error

codes under the following circumstances:
1. when the byte count < 7 or greater than 245

2. when the reference type !=6
3. when the record number >10000 or the record

number + register length >10000

VI.D.III. Function Code 23

PLC Q incorrectly reports an error when:
1. the starting write address was valid and the

starting write address + quantity of registers to
write was within range and the quantity of
registers was 120 or 121 (limit is 121)

PLC Q returned incorrect error codes under the

following circumstances:
1. when the starting write address was valid and the

quantity of registers to write was 120 or 121 and
the starting address + quantity of registers to
write was out of range and the data was valid

PLC M returned incorrect error codes under the

following circumstances:
1. when the read starting address was valid but the

quantity of registers was zero
2. when the read starting address was valid and the

read quantity of registers was out of range and
the read starting address+ read quantity of
registers was valid or invalid

3. when read starting address was invalid and the
read quantity of registers was zero or out of
range

4. when the write starting address was valid and the
write quantity of registers was zero

5. when the write starting address and the write
quantity of registers was valid and the write
quantity + write starting address was within
range but the actual data length and the and the
specified data length were not in agreement

6. when the write starting address was valid and the
write quantity was invalid and the write quantity
+ write starting address was or was not within
range and the actual data length and the specified
data length were or were not in agreement

VI.D.I. Fuzzed MODBUS Headers

When fuzzing the MODBUS header PLC Q

displayed the following incorrect behaviors:
1. invalid function codes over 70 caused PLC Q to

send a TCP Reset thereby terminating the
communication

2. incorrectly specified MODBUS packet lengths
caused PLC Q to send a TCP Reset thereby
terminating the communication

When fuzzing the MODBUS header PLC M
displayed the following incorrect behaviors:

1. incorrectly specified MODBUS packet lengths
caused PLC M to send a TCP Reset thereby
terminating the communication

VII. CONCLUSIONS

The blackPeer test framework allows for the

economical creation of powerful test suites capable of
quickly and efficiently testing a protocol’s
implementation against its specification. The blackPeer
test framework is superior to conventional testing
methods in two key areas:

1. the framework not only automates the
generation of test cases but also automates the
interpretation of the DUT’s behavior in response
to these test cases. This is achieved by the novel
approach of statefully generating a test case
oracle in conjunction with each generated test
case

2. the framework provides a formal language
medium in which the tester can express a test
suite. This ability allows the tester to make
quantifiable claims about the coverage of his
tests

We ran approximately 5000 conformance tests
against each PLC. The design of the test framework
enabled efficient execution of the tests and quick
interpretation of the results. The amount of coverage
offered by other conformance testing tools, such as those
distributed by the MODBUS-IDA, is much smaller than
that offered by blackPeer and the interpretation of the
resulting tests is a much more onerous task.

blackPeer discovered more than 60 categories of
errors between the two PLC’s tested. This is unacceptable
for devices that may be deployed in critical safety
systems. Most of the errors blackPeer detected came in
the form of incorrect error responses. Human Machine
Interface (HMI) software, such as WonderWare ,
interprets error responses and displays their meaning to
the plant operator; such errors result in the operator
receiving incorrect information. The receipt of this
incorrect information could have catastrophic
consequences.

The errors blackPeer discovered surrounding the use
of illegal serial function codes was also troubling. The
fact that PLC Q could be taken offline indefinitely by the
simple execution of a MODBUS function code 8 sub
function 4 request is extremely dangerous. This failure
could result in the plant operator losing complete control
of potentially safety critical systems. This error could not
have been discovered by formally investigating the TCP
or MODBUS protocols in isolation. A test framework
capable of testing protocols embedded within protocols,
such as blackPeer, is required for such discoveries.

The SCADA industry urgently needs to adopt better
security robustness testing as standard practice. Industry
bodies like the American National Standards Institute
(ANSI) and the International Electromechanical
Commission (IEC) need to mandate standardized
security/conformance testing and certification for these
critical devices. The number of errors detected in the two
PLCs and the errors’ significance shows that the security
testing/certification of SCADA devices is critical to
protect our national infrastructures from both accidental
and deliberate attacks. As well as demonstrating the need
for such testing, this paper also illustrates how it can be
successfully conducted.

ACKNOWLEDGMENTS

We would like to thank Roman Shaffer of the U.S.

Nuclear Regulatory Commission for his support and
helpful suggestions. We would also like to thank the US
TSWG for its partial funding of this project.

REFERENCES

[1] Vulnerability Note VU#190617: LiveData ICCP

Server heap buffer, US Computer Emergency
Response Team, May 16, 2006,
http://www.kb.cert.org/vuls/id/190617

[2] D. P. DUGGAN, M. BERG, J. DILLINGER and
J. STAMP; “Penetration Testing of Industrial
Control Systems”, Sandia National Laboratories,
March 7, 2005.

[3] E.J. BYRES, J. CARTER, A. ELRAMLY and D.
HOFFMAN; “Worlds in Collision: Ethernet on
the Plant Floor”, ISA Emerging Technologies
Conference, Instrumentation Systems and
Automation Society, Chicago, October (2002).

[4] R. KAKSONEN, M. LAASKO and A.
TAKANEN, “Vulnerability analysis of software
through syntax testing,” University of Oulu,
Finland, Tech. Rep. (2000).

[5] O. TAL, S. KNIGHT and T. DEAN, “Syntax-
based vulnerability testing of frame-based
network protocols,” Privacy, Security and Trust
(2004).

[6] D. INCE, “The automatic generation of test
data,” The Computer Journal, 30, 1 (1987).

[7] E. G. SIRER and B. N. BERSHAD, “Using
production grammars in software testing,” PLAN
'99: Proceedings of the 2nd conference on
Domain-specific languages, New York, NY, pp
1-13, ACM Press, (1999).

