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Abstract – The recent introduction of information technologies such as Ethernet® into nuclear industry control devices 
has resulted in significantly less isolation from the outside world. This raises the question of whether these systems could be 
attacked by malware, network hackers or professional criminals to cause disruption to critical operations in a manner 
similar to the impacts now felt in the business world. 

To help answer this question, a study was undertaken to test a representative control protocol to determine if it had 
vulnerabilities that could be exploited. A framework was created in which a test could express a large number of test cases in 
very compact formal language. This in turn, allowed for the economical automation of both the generation of selectively 
malformed protocol traffic and the measurement of device under test’s (DUT) behavior in response to this traffic. 

Approximately 5000 protocol conformance tests were run against two major brands of industrial controller. More than 
60 categories of errors were discovered, the majority of which were in the form of incorrect error responses to malformed 
traffic. Several malformed packets however, caused the device to respond or communicate in inappropriate ways. These 
would be relatively simple for an attacker to inject into a system and could result in the plant operator losing complete view 
or control of the control device. Based on this relatively small set of devices, we believe that the nuclear industry urgently 
needs to adopt better security robustness testing of control devices as standard practice. 
 

 
I. INTRODUCTION 

 
The recent introduction of information technologies 

such as Windows®, Ethernet® and TCP/IP in nuclear 
industry control devices has resulted in significantly less 
isolation from the outside world. Both anecdotal evidence 
[1] [2] and research [3] indicates that SCADA protocols, 
particularly those running over top of transport protocols 
such as TCP/IP, have vulnerabilities that could be 
exploited by network hackers or terrorists to cause 
considerable disruption to our critical infrastructures. 
Little is known about these vulnerabilities and there are 
limited security tools or methodologies available for 
vendors or users to detect these flaws prior to equipment 
deployment. 

As highly integrated control systems are relatively 
new, there is shockingly little data, good or bad, on 
network security for these industrial devices. The current 
methodologies for security testing focus on business 
systems and their dependence on common operating 
system such as Windows and UNIX. Similarly, 
vulnerability reporting such as CERT or BugTraq 
primarily addresses IT products and rarely includes issues 
with industrial control products.  In order to determine the 
security robustness of integrated control systems new 
testing methodologies are required. 

 

This paper describes a new test framework which 
enables the economical creation of security suites targeted 
at testing the dominant SCADA application layer 
protocols. 

To demonstrate the effectiveness of the framework 
we employed it to generate a test suite for the 
MODBUS/TCP protocol. We then exercised the resulting 
test suite against the MODBUS/TCP implementations on 
two representative SCADA devices. The results were 
unsettling.   
 
II. ORGANIZATION OF THIS PAPER 
 

This paper is designed to introduce and support the 
need for new and efficient tools to test the network 
security robustness of industrial control devices. We 
begin by briefly presenting some background information 
on protocol testing and the tools which are available. We 
then introduce blackPeer, an innovative testing 
framework for communication protocols. We then discuss 
the employment of blackPeer in conformance testing 
MODBUS/TCP implementations. We conclude with a 
summary of the MODBUS/TCP implementation errors 
found by blackPeer in two representative SCADA devices 
and some observations on how the SCADA community 
can better ensure the security of its control systems. 

 
 



III. BACKGROUND AND RELATED WORK 
 
Many communication protocols are highly complex 

and their implementations may be written to a 
specification that contains areas of ambiguity. Experience 
tells us that incorrect assumptions or carelessness of the 
implementer are common sources of protocol 
vulnerabilities. Protocol vulnerabilities can reveal 
themselves as segmentation faults, stack, heap or buffer 
overflows, etc., all of which can cause the protocol 
implementation to fail resulting in a potential exploit. 

Tools to scan for known vulnerabilities in traditional 
IT systems have been available for at least a decade. The 
market for these vulnerability scanners has been 
significant and products such as Nessus, FoundScan and 
Internet Security Scanner (ISS) have been popular with IT 
administrators trying to locate unpatched computers on 
their networks. Unfortunately these tools offer little in the 
way of security testing for new products with new 
vulnerabilities - they only check for known vulnerabilities 
available in vulnerability lists such as CERT or BugTraq. 
As a result, most vendors have little knowledge of 
possible vulnerabilities in new systems until after the 
product is released to the public.  

This is particularly true for the SCADA systems used 
in critical infrastructures such as the nuclear, oil and gas, 
water and electrical generation/distribution industries. The 
embedded devices used in these systems are not the usual 
Windows or UNIX-based platforms and the 
vulnerabilities are not available in the IT-focused CERT 
or BugTraq vulnerability lists. As a result, SCADA 
operators have little knowledge of possible vulnerabilities 
in their critical systems until a disaster (such as the 
August 2003 blackout in the Eastern U.S.) strikes. 

In the academic world there have been several test 
tools that have had success in locating new vulnerabilities 
in network devices based on grammar and fuzzy 
techniques. Considerable work has been done by the 
PROTOS project group [4] and by Tal, Knight and Dean 
[5]. Each considers the syntax-based generation of 
protocol data units (PDU's). A PDU translates into a 
single test packet to be sent to the device under test 
(DUT). Their methods have proven effective in finding 
vulnerabilities [4][5] however, they only allow for the 
construction of simple single-packet test cases. Such test 
cases are not sufficient for testing protocol functionality 
requiring interaction between the test case generator and 
the DUT. To perform such testing the test case generator 
must be able to generate test cases consisting of 
semantically meaningful sequences of PDU's.  

A sequence of PDU's in which each PDU is preceded 
by its communication direction relative to the test case 
generator is termed a protocol test sequence (PTS). PTS’s 
can direct test case executors to not only transmit certain 
PDU’s but also to compare received packets against 

indicated PDU’s. Such ability greatly enhances the 
effectiveness of fuzzer-based methods. 

Furthermore, as highly integrated control systems 
typically consist of many different devices and because 
these devices may contain implementations of many 
different protocols, a truly valuable protocol vulnerability 
testing tool must be easily applicable to a wide variety of 
protocols. As well, a valued tool must be employable by 
users with varying skill sets. For example, the tool should 
be employable by the vendor, by a field engineer or by a 
plant floor worker. To the best of our knowledge, no such 
tool exists. 

 
IV. THE BLACKPEER TEST FRAMEWORK 
 

The automated generation of test data for the 
purposes of software validation and verification has been 
a major aim of testing research[6]. Path-oriented methods, 
data flow methods, random testing, adaptive testing, and 
syntax-based testing are a few of the methods employed 
for this task. 

Syntax-based testing tools process a description of 
the desired test data expressed in notation such as Backus 
Naur Form (BNF). Given the test data syntax these tools 
generate test sets which satisfy the syntax. A major 
problem in syntax-based testing is respecting contextual 
dependencies. Solutions include the use of dynamic 
syntax, addition of rules to test data syntax during test 
data generation, and attributed grammars, grammars 
whose definition is overloaded with attributes. 

In attribute grammars, the attributes represent 
contextual information associated with terminals and non-
terminals. Attribute grammars can solve the test oracle 
problem as the contextual information can allow for the 
production of test data along with the output expected 
from the DUT. Hence, attribute grammars can also solve 
the problem of generating semantically meaningful 
sequences of PDU's, i.e. PTS’s. 

blackPeer is an attribute grammar based PTS 
generator and executor. The basic file structure of 
blackPeer is similar of that employed by Sirer and 
Bershad [7] and is shown in Figure 1. PTS's are described 
by an attributed grammar. This grammar is passed as 
input to the Code Generator. The Code Generator pareses 
the grammar and creates an executable program called the 
TestCase Generator. When supplied with an initialization 
file called the variable init file, the TestCase Generator 
writes out the PTS's encoded by the grammar to a file 
called the testCases file. The TestCase Executor then 
reads in the testCases file along with basic information 
about the DUT and executes the PTS's one by one, 
reporting and recording the results. 

The modular nature of the blackPeer tool allows 
different levels of functionality to be made available to 
different categories of users. For example, a plant worker 
who knows little of communication protocols but much  



 

 
Fig. 1. blackPeer PTS generation and execution. 
 
about PLC's may be given a testCases file and an 

appropriate testCase Executor. An industrial engineer on 
the other hand may be given the testCase Generator thus 
allowing him to create a variety of testCases files 
depending on the nature of the variable init file he creates.  

This modular nature also allows for the easy 
transition between different protocols. That is, to test a 
different protocol all that is needed is a new grammar file 
and an appropriate testCase Executor. 

 
All grammar files are written using an extended 

Backus Naur Form (BNF) syntax: 
• non-terminals specified as identifiers and 

terminals as string constants  
• alternatives specified by a vertical bar and 

concatenation by one or more spaces 
• the required portion of a production is terminated 

by a newline character 
• the right hand side expression can contain 

parenthesis one level deep for grouping logical 
expressions, square brackets for denoting 
optional expressions, and braces to delimit 
expressions that can occur zero or more times 

• an optional range after the opening brace allows 
repetition a fixed number of times 

• comments are started by a // and terminated by 
the end of the line 

• the start symbol is the non-terminal on the left 
hand side of the first production 

 
The syntax for a grammar is as follows: 
 
grammar ::=  
 rule {rule} "\n" 
rule ::=  
 nonterminal "::=" rhs "\n" 
rhs ::=  
 ( nonterms | terms ) "\n" [pre] [post] "\n" 

nonterms ::=  
 "(" nonterms ")" | nonterminal {("|" | " 

 ")nonterminal}  
terms ::=  
 "(" terms ")" | terminal {("|" | " ")terminal} 
pre ::=  
 "%pre{\n" program_statements "\n}%" 
post ::=  
 "%post{\n" program_statements "\n}%" 
nonterminal ::=  
 letters_and_or_digits  
terminal ::=  
 """ value ":" value """  
value ::=  
 ["$"] letters_and_or_digits  
 
The syntax for a test case is as follows: 
 
testcase ::= 
  tx {tx|rx} "\n" 
tx ::=  
 "TX:0 " digits ":" digits" " {digits ":" digits " "} 
rx ::=  
 "RX:0 " ("*"|digits) ":" digits " " {("*"|digits) 

 ":" digits " "} 
 

V. CONFORMANCE TESTING MODBUS/TCP 
 
The blackPeer framework is well-suited to 

conformance testing. Given a protocol’s specification, one 
can easily construct a grammar defining the correct 
operation of an implementation to this specification. An 
excerpt of the grammar written for the MODBUS/TCP 
protocol is shown in Example I. In conjunction with the 
creation of a grammar comes the definition of the 
variability found across implementations. An example of 
one such variability is the number of holding registers 
present on the DUT. Such variability’s are defined in a 
separate variable initialization file and are passed as input 
to the test case generator, see Figure 1. An Excerpt of the 
variable file for the MODBUS/TCP grammar is shown in 
Example II.  

 
EXAMPLE I. Excerpt from MODBUS grammar file 

 
REQ ::= TX HDR FC DATA 
%post{ 
int i = Utilily.getVariableValue("currLen"); 
int tot = Utility.sumOfLengths(tokens)-6 ; 
 
if(i==-1)//sub with real length  

 Utility.setRuleResolve(tokens[1],2, tot, 2 ); 
  
else if( tot != i )    

 Utility.setVariableValue("exceptCode",4); 
}% 



EXAMPLE II. Excerpt from variable init file 
 
rQuan = {0,1,$rhmaxconsec-1,$rhmaxconsec, 

 $rhmaxconsec+1, $cmaxconsec-1, $cmaxconsec, 
 $cmaxconsec+1} 

 
wAddr={0,1,$numIReg-1,$numIReg,$numDisc-

 1,$numDisc,$numCoils-1,$numCoils, 
 $numHReg-1,$numHReg,3000} 

 
V.A. Test Environment 

 
The basic test bench consists of (i) the DUT (in this 

case the PLC whose MODBUS/TCP implementation we 
wish tested), and (ii) the platform computer running 
blackPeer.  

The network configuration is illustrated in figure 2. 

 
Fig 2. The hardware test bench 

 
We selected two representative SCADA devices for 

test. We will refer to them as PLC M and PLC Q. 
PLC Q is a modular backplane PLC. At its most basic 

level it consists of a variety of input/output (I/O), 
processor and communications modules that are installed 
in a common backplane. The central processor unit (CPU) 
module is separate from the other modules. The Ethernet 
Communications module provides an interface between 
an Ethernet-based network, the backplane, and the CPU 
module. It supports the MODBUS protocol over TCP.  

PLC M is a small versatile PLC. It is used for PC-
based control, distributed control, distributed I/O and 
traditional, stand-alone PLC Control. It employs Ethernet 
as its primary external communications protocol and 
supports MODBUS/TCP. 

 
VI. RESULTS 

 
We start with grammars covering read and write 

function codes. Then we examine if the device supports 
the function codes that are designated for serial only. We 
finish off with a grammar that examines miscellaneous 
and invalid function codes. 

 
VI.A. MODBUS/TCP Read Grammar Test 

 
The MODBUS/TCP Read grammar examines the 

DUT’s behavior in response to valid and invalid read 
requests. The function codes tested are: 

• 01 Read Coils 

• 02 Read Discrete Inputs 
• 03 Read Holding Registers 
• 04 Read Input Registers 

 
TABLE I. Read Grammar Test Observed Behavior 
 PLC M PLC Q 
Testcases 352 352 
Passed  231 298 
Failed  121 54 
 

We now break down the failed tests by function code. 
 
VI.A.I. Function Codes 01 and 02 
 

PLC Q and PLC M returned incorrect error codes 
when: 

1. the starting address and quantity of outputs was 
valid but the starting address + quantity of 
outputs was out of range 

2. the starting address was invalid but the quantity 
of outputs was within range 

 
VI.A.II. Function Code 03 

 
PLC Q conformed to function code 03’s specification 

whereas PLC M returned incorrect error codes under the 
following circumstances: 

1. when the starting address was valid but the 
quantity of registers to read was set to zero 

2. when the starting address was valid but the 
quantity of registers was out of range 

3. when the starting address was invalid and 
quantity of registers was 0 or out of range 

 
VI.A.III. Function Code 04 
 

PLC Q returned no error while PLC M returned 
incorrect error codes under the following erroneous 
circumstances: 

1. when the starting address and the quantity of 
registers was valid but the quantity of registers + 
starting address was out of range 

2. when the starting address was invalid but the 
quantity of registers was within range 

 
VI.B. MODBUS/TCP Write Grammar Test 

 
The MODBUS/TCP Write grammar examines the 

DUT’s behavior in response to valid and invalid write 
requests. The function codes tested are: 

• 05 Write Single Coil 
• 06 Write Single Register 
• 15 Write Multiple Coils 
• 16 Write Multiple Registers 
 



TABLE II. Write Grammar Test Observed Behavior 
 PLC M PLC Q 
Testcases 1384 1384 
Passed  504 1040 
Failed  880 344 

 
We now break down the failed tests by function code. 
 

VI.B.I. Function Code 15 
 
Both PLC Q and PLC M returned incorrect error 

codes under the following circumstances: 
1. when the starting address, the quantity of outputs 

and the data was valid but the starting address + 
quantity of output was out of range 

2. when the starting address and the quantity of 
outputs was valid but the starting address + 
quantity of outputs was out of range and the data 
byte length was not equal to the actual length of 
the data 

3. when the starting address was invalid and the 
quantity of outputs was 0 and data length was 
correct or incorrect 

4. when the starting address was invalid and the 
quantity of outputs was non zero and the  data 
length was incorrect 

 
VI.B.II. Function Code 16 
 

PLC Q incorrectly reported an error when: 
1. the starting address was valid and the starting 

address + quantity of registers was within range 
and the quantity of registers was 122 or 123 
(limit is 123) 

 
PLC Q returned incorrect error codes under the 

following circumstances: 
1. when the starting address was valid and the 

quantity of registers was 122 or 123 and the 
starting address + quantity of registers was out of 
range and the data was valid 

 
PLC M returned incorrect error codes under the 

following circumstances: 
1. when the starting address was valid but the 

quantity of registers was zero 
2. when the starting address and quantity of 

registers was valid and the starting address + 
quantity was with in range but the actual data 
length and specified data length were not in 
agreement 

3. when the starting address was valid and the 
quantity of registers was invalid and the staring 
address + quantity of registers was within range 

4. when the starting address was valid and the 
quantity of registers was invalid and the actual  

data length and the specified data length were or 
were not in agreement 

 
VI.C. MODBUS/TCP Serial Grammar Test 

 
The MODBUS/TCP Serial grammar examines the 

DUT’s behavior in response to valid and invalid serial 
requests. The function codes tested are: 

• 07 Read Exception Status 
• 08 Diagnostics 
• 11 Get Comm Event Counter 
• 12 Get Event Log 
• 17 Report Slave ID 
 

TABLE III. Serial Grammar Test Observed Behavior 
 PLC M PLC Q 
Testcases 28 28 
Passed  0 11 
Failed  28 17 

 
We now break down the failed tests by function code. 
 

VI.C.I. Function Codes 07, 11, 12 and 17 
 
Both PLC Q and PLC M responded to function code 

07, 11, 12 and 17 requests even though they are serial line 
only functions. The correct response would have been to 
return an error code of 1 indicating function not 
supported. 

 
VI.C.II. Function Code 08 

 
Under all circumstances PLC M responded to 

function code 08 requests by returning an error code of 3 
(indicating an incorrect data value). The correct response 
would have been to return an error code of 1 indicating 
function not supported. 

PLC Q returned incorrect error codes in response to 
function code 08 sub functions 3, 14, 15 and 20. More 
disturbing, PLC Q carried out the requests of function 
code 08 sub functions 0, 1, 2, 4, 10, 11, 12, 13, 16, 17 and 
18.  

Function code 08 sub function 4 forces a PLC into 
listen mode. It will not leave listen mode until it receives 
a “restart communications option” (function code 8 sub 
function 1). However, since MODBUS is being executed 
over TCP PLC Q must first engage in a TCP three-way 
handshake prior to receiving a “restart communications 
command”. As PLC Q is in listen mode it will not engage 
in the 3-way handshake, hence PLC Q must be power-
cycled before it will come back online. 

This brings to light an interesting point. Function 08 
sub function 4 was created to allow the engineer to isolate 
a network flooding PLC. This is especially useful in the 
case of older low speed wireless networks where the 



underlying transport medium was easily saturated. 
However, when executing MODBUS over TCP such 
saturation is easily mitigated by TCP’s back-off and 
retransmit strategies.  

Furthermore, as demonstrated above, executing 
function code 08 sub function 4 over a TCP connection is 
dangerous. It was intended to be executed over a stateless 
medium, one in which the special “reset communications” 
packet could be received at any time and not over a 
medium in which a stateful communications startup is 
required.  

This is indeed a good example of the problems that 
one faces when transmitting one protocol inside another. 
Investigating each protocol individually does not shed 
light on the problems that may arise when the protocols 
become coupled in the way that MODBUS and TCP have 
been. 

 
VI.D. MODBUS/TCP Miscellaneous Grammar Test 

 
The MODBUS/TCP Miscellaneous grammar 

examines the DUT’s behavior in response to valid and 
invalid miscellaneous function code requests. It also 
examines the DUT’s behavior in response to invalid 
function code requests. The valid function codes tested 
are: 

• 20 Read File Record 
• 21 Write File Record 
• 22 Mask Write Holding Registers 
• 23 Read / Write Multiple Registers 
• 24 Read FIFO Queue 
• Fuzzed Headers 
 

TABLE IV. Serial Grammar Test Observed Behavior 
 PLC M PLC Q 
Testcases 3433 3433 
Passed  531 2171 
Failed  2902 1262 

 
We now break down the failed tests by function code. 
 

VI.D.I. Function Code 20 
 
Both PLC Q and PLC M returned incorrect error 

codes under the following circumstances: 
1. when the byte count < 7 or greater than 245 
2. when the reference type !=6 
3. when the record number >10000 or the record 

number + register length >10000 
 

VI.D.II. Function Code 21 
 
Both PLC Q and PLC M returned incorrect error 

codes under the following circumstances: 
1. when the byte count < 7 or greater than 245 

2. when the reference type !=6 
3. when the record number >10000 or the record 

number + register length >10000 
 
VI.D.III. Function Code 23 

 
PLC Q incorrectly reports an error when: 
1. the starting write address was valid and the 

starting write address + quantity of registers to 
write was within range and the quantity of 
registers was 120 or 121 (limit is 121) 

 
PLC Q returned incorrect error codes under the 

following circumstances: 
1. when the starting write address was valid and the 

quantity of registers to write was 120 or 121 and 
the starting address + quantity of registers to 
write was out of range and the data was valid 

 
PLC M returned incorrect error codes under the 

following circumstances: 
1. when the read starting address was valid but the 

quantity of registers was zero 
2. when the read starting address was valid and the 

read quantity of registers was out of range and 
the read starting address+ read quantity of 
registers was valid or invalid 

3. when read starting address was invalid and the 
read quantity of registers was zero or out of 
range 

4. when the write starting address was valid and the 
write quantity of registers was zero 

5. when the write starting address and the write 
quantity of registers was valid and the write 
quantity + write starting address was within 
range but the actual data length and the and the 
specified data length were not in agreement 

6. when the write starting address was valid and the 
write quantity was invalid and the write quantity 
+ write starting address was or was not within 
range and the actual data length and the specified 
data length were or were not in agreement 

 
VI.D.I. Fuzzed MODBUS Headers 

 
When fuzzing the MODBUS header PLC Q 

displayed the following incorrect behaviors: 
1. invalid function codes over 70 caused PLC Q to 

send a TCP Reset thereby terminating the 
communication 

2. incorrectly specified MODBUS packet lengths 
caused PLC Q to send a TCP Reset thereby 
terminating the communication 

 
 



When fuzzing the MODBUS header PLC M 
displayed the following incorrect behaviors: 

1. incorrectly specified MODBUS packet lengths 
caused PLC M to send a TCP Reset thereby 
terminating the communication 

 
VII. CONCLUSIONS 

 
The blackPeer test framework allows for the 

economical creation of powerful test suites capable of 
quickly and efficiently testing a protocol’s 
implementation against its specification. The blackPeer 
test framework is superior to conventional testing 
methods in two key areas: 

1. the framework not only automates the 
generation of test cases but also automates the 
interpretation of the DUT’s behavior in response 
to these test cases. This is achieved by the novel 
approach of statefully generating a test case 
oracle in conjunction with each generated test 
case 

2. the framework provides a formal language 
medium in which the tester can express a test 
suite. This ability allows the tester to make 
quantifiable claims about the coverage of his 
tests 

We ran approximately 5000 conformance tests 
against each PLC. The design of the test framework 
enabled efficient execution of the tests and quick 
interpretation of the results. The amount of coverage 
offered by other conformance testing tools, such as those 
distributed by the MODBUS-IDA, is much smaller than 
that offered by blackPeer and the interpretation of the 
resulting tests is a much more onerous task. 

blackPeer discovered more than 60 categories of 
errors between the two PLC’s tested. This is unacceptable 
for devices that may be deployed in critical safety 
systems. Most of the errors blackPeer detected came in 
the form of incorrect error responses. Human Machine 
Interface (HMI) software, such as WonderWare , 
interprets error responses and displays their meaning to 
the plant operator; such errors result in the operator 
receiving incorrect information. The receipt of this 
incorrect information could have catastrophic 
consequences. 

The errors blackPeer discovered surrounding the use 
of illegal serial function codes was also troubling. The 
fact that PLC Q could be taken offline indefinitely by the 
simple execution of a MODBUS function code 8 sub 
function 4 request is extremely dangerous. This failure 
could result in the plant operator losing complete control 
of potentially safety critical systems. This error could not 
have been discovered by formally investigating the TCP 
or MODBUS protocols in isolation. A test framework 
capable of testing protocols embedded within protocols, 
such as blackPeer, is required for such discoveries. 

The SCADA industry urgently needs to adopt better 
security robustness testing as standard practice. Industry 
bodies like the American National Standards Institute 
(ANSI) and the International Electromechanical 
Commission (IEC) need to mandate standardized 
security/conformance testing and certification for these 
critical devices. The number of errors detected in the two 
PLCs and the errors’ significance shows that the security 
testing/certification of SCADA devices is critical to 
protect our national infrastructures from both accidental 
and deliberate attacks. As well as demonstrating the need 
for such testing, this paper also illustrates how it can be 
successfully conducted.  
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